Помогите с правильным ответом. В чем основные различия кодирования по методу Шеннона-Фано и по методу Хаффмана?

1.всегда можно предложить способ кодирования, при котором избыточность будет сколь угодно малой величиной

2.кодовый знак относится сразу к нескольким буквам первичного алфавита или даже к целому слову первичного языка. Кодирование блоков понижает избыточность.

3.п
ри кодировании по методу Хаффмана — для русского алфавита избыточность оказалась менее 0.01%

4.
по методу Хаффмана средняя информация на знак первичного алфавита оказывается более чем в 2 раза меньше, чем при равномерном алфавитном кодировании.

Ответы

Алгоритм Шеннона-Фано — один из первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон и Фано. Данный метод сжатия имеет большое сходство с алгоритмом Хаффмана, который появился на несколько лет позже. Алгоритм использует коды переменной длины: часто встречающийся символ кодируется кодом меньшей длины, редко встречающийся — кодом большей длины. Коды Шеннона-Фано префиксные, то есть, никакое кодовое слово не является префиксом любого другого. Это свойство позволяет однозначно декодировать любую последовательность кодовых слов.

Содержание

Основные сведения

Кодирование Шеннона-Фано (англ. Shannon-Fano coding) — алгоритм префиксного неоднородного кодирования. Относится к вероятностным методам сжатия (точнее, методам контекстного моделирования нулевого порядка). Подобно алгоритму Хаффмана алгоритм Шеннона-Фано использует избыточность сообщения, заключённую в неоднородном распределении частот символов его (первичного) алфавита, то есть заменяет коды более частых символов короткими двоичными последовательностями, а коды более редких символовболее длинными двоичными последовательностями.

Алгоритм был независимо друг от друга разработан Шенноном (публикация «Математическая теория связи», 1948 год) и, позже, Фано (опубликовано как технический отчёт).

Основные этапы

  1. Символы первичного алфавита m1 выписывают в порядке убывания вероятностей.
  2. Символы полученного алфавита делят на две части, суммарные вероятности символов которых максимально близки друг другу.
  3. В префиксном коде для первой части алфавита присваивается двоичная цифра «0», второй части — «1».
  4. Полученные части рекурсивно делятся и их частям назначаются соответствующие двоичные цифры в префиксном коде.

Когда размер подалфавита становится равен нулю или единице, то дальнейшего удлинения префиксного кода для соответствующих ему символов первичного алфавита не происходит, таким образом, алгоритм присваивает различным символам префиксные коды разной длины. На шаге деления алфавита существует неоднозначность, так как разность суммарных вероятностей p0 p1 может быть одинакова для двух вариантов разделения (учитывая, что все символы первичного алфавита имеют вероятность, большую нуля).

Алгоритм вычисления кодов Шеннона-Фано

Код Шеннона-Фано строится с помощью дерева. Построение этого дерева начинается от корня. Все множество кодируемых элементов соответствует корню дерева (вершине первого уровня). Оно разбивается на два подмножества с примерно одинаковыми суммарными вероятностями. Эти подмножества соответствуют двум вершинам второго уровня, которые соединяются с корнем. Далее каждое из этих подмножеств разбивается на два подмножества с примерно одинаковыми суммарными вероятностями. Им соответствуют вершины третьего уровня. Если подмножество содержит единственный элемент, то ему соответствует концевая вершина кодового дерева; такое подмножество разбиению не подлежит. Подобным образом поступаем до тех пор, пока не получим все концевые вершины. Ветви кодового дерева размечаем символами 1 и 0, как в случае кода Хаффмана.

При построении кода Шеннона-Фано разбиение множества элементов может быть произведено, вообще говоря, несколькими способами. Выбор разбиения на уровне n может ухудшить варианты разбиения на следующем уровне (n+1) и привести к неоптимальности кода в целом. Другими словами, оптимальное поведение на каждом шаге пути еше не гарантирует оптимальности всей совокупности действий. Поэтому код Шеннона-Фано не является оптимальным в общем смысле, хотя и дает оптимальные результаты при некоторых распределениях вероятностей. Для одного и того же распределения вероятностей можно построить, вообще говоря, несколько кодов Шеннона-Фано, и все они могут дать различные результаты. Если построить все возможные коды Шеннона-Фано для данного распределения вероятностей, то среди них будут находиться и все коды Хаффмана, то есть оптимальные коды.

Пример кодового дерева

Исходные символы:

A (частота встречаемости 50), B (частота встречаемости 39), C (частота встречаемости 18), D (частота встречаемости 49), E (частота встречаемости 35), F (частота встречаемости 24).

Кодовое дерево

 

Полученный код:

A — 11, B — 101, C — 100, D — 00, E — 011, F — 010.

Кодирование Шеннона-Фано является достаточно старым методом сжатия, и на сегодняшний день оно не представляет особого практического интереса. В большинстве случаев, длина сжатой последовательности, по данному методу, равна длине сжатой последовательности с использованием кодирования Хаффмана. Но на некоторых последовательностях всё же формируются неоптимальные коды Шеннона-Фано, поэтому сжатие методом Хаффмана принято считать более эффективным.

Литература

  • АМЯглом, ИМЯглом. Вероятность и информация. — М.: «Наука», 1973.

Ссылки


Wikimedia Foundation. 2010.

Смотреть что такое «Кодирование Шеннона-Фано» в других словарях:

  • Алгоритм Шеннона — Фано — Алгоритм Шеннона  Фано  один из первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон и Фано (англ. Fano). Данный метод сжатия имеет большое сходство с алгоритмом Хаффмана, который появился на несколько лет …   Википедия

  • Код Шеннона-Фано — Алгоритм Шеннона Фано  один из первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон и Фано. Данный метод сжатия имеет большое сходство с алгоритмом Хаффмана, который появился на несколько лет позже. Алгоритм… …   Википедия

  • Кодирование энтропии — кодирование словами (кодами) переменной длины, при которой длина кода символа имеет обратную зависимость от вероятности появления символа в передаваемом сообщении. Обычно энтропийные кодировщики используют для сжатия данных коды, длины которых… …   Википедия

  • Кодирование с минимальной избыточностью — Кодирование энтропии кодирование словами (кодами) переменной длины, при которой длина кода символа имеет обратную зависимость от вероятности появления символа в передаваемом сообщении. Обычно энтропийные кодировщики используют для сжатия данных… …   Википедия

  • Кодирование длин серий — (англ. Run length encoding, RLE) или Кодирование повторов  простой алгоритм сжатия данных, который оперирует сериями данных, то есть последовательностями, в которых один и тот же символ встречается несколько раз подряд. При кодировании… …   Википедия

  • Кодирование Хаффмана — Алгоритм Хаффмана (англ. Huffman) адаптивный жадный алгоритм оптимального префиксного кодирования алфавита с минимальной избыточностью. Был разработан в 1952 году доктором Массачусетского технологического института Дэвидом Хаффманом. В настоящее… …   Википедия

  • Шеннона теорема — Теорема Котельникова (в англоязычной литературе  теорема Найквиста) гласит, что, если аналоговый сигнал x(t) имеет ограниченный спектр, то он может быть восстановлен однозначно и без потерь по своим дискретным отсчётам, взятым с частотой более… …   Википедия

  • Кодирование Голомба — Коды Голомба  это семейство энтропийных кодеров, являющихся общим случаем унарного кода. Также под кодом Голомба может подразумеваться один из представителей этого семейства. Код Голомба позволяет представить последовательность символов в виде… …   Википедия

  • Алгоритм Шеннона — Алгоритм Шеннона  Фано  один из первых алгоритмов сжатия, который впервые сформулировали американские учёные Шеннон и Фано (англ. Robert Fano). Данный метод сжатия имеет большое сходство с алгоритмом Хаффмана, который появился на… …   Википедия

  • Энтропийное кодирование — Для термина «Кодирование» см. другие значения. Энтропийное кодирование  кодирование последовательности значений с возможностью однозначного восстановления с целью уменьшения объёма данных (длины последовательности) с помощью усреднения… …   Википедия

13.10.16
Рекомендуем личную консультацию

Елена Васильевна

Меня зовут Елена Васильевна, я репетитор по математике из г. Гомель (Беларусь). Занимаюсь со школьниками (8 по 11 класс), а также со студентами.
Посмотреть всех экспертов из раздела Учеба и наука > Информатика