Дан остроугольный треугольник ABC. Пусть H — точка пересечения его высот, O — центр описанной окружности, M — середина стороны BC, D — основание

высоты, опущенной из вершины A. Оказалось, что четырехугольник HOMD является прямоугольником, причем HO=47, HD=8. Найдите BC.

Ответы

98
Обозначим за х МС, а за у — АН.
Тогда 
8^2+х^2=47^2+y^2 и
8/(x+47)=(x-47)/(8+y)
Решаем эту системку и х=49 => BC = 98
06.09.16
Рекомендуем личную консультацию

Галина Владимировна

Сейчас на сайте
Галина Владимировна
Галина Владимировна
Эксперт месяца
Помощь в решении самых разнообразных задач по математическим дисциплинам, в том числе и вузовским. В личном чате бесплатные решения не даю, для этого пишите в общую ленту вопросов.
Посмотреть всех экспертов из раздела Учеба и наука > Математика