ниже

Дан остроугольный треугольник ABCABC. Пусть HH — точка пересечения его высот, OO — центр описанной окружности, MM — середина стороны BCBC, DD — основание высоты, опущенной из вершины AA. Оказалось, что четырехугольник HOMDHOMD является прямоугольником, причем HO=2HO=2, HD=2HD=2. Найдите BCBC.

Ответы

Попробуйте научиться отмечать лучшие ответы.
25.09.16
Рекомендуем личную консультацию

Михаил Александров

Сейчас на сайте
Помогу подготовиться к работам и экзаменам (ЕГЭ, ГИА), сделать домашние задания, в том числе и вузовский курс (кроме теории вероятности и статистики), проконсультирую и настрою на систему обучения
Посмотреть всех экспертов из раздела Учеба и наука > Математика