помогите пожалуйста с задачей по геометрии

Лучший ответ по мнению автора


треугольники
AB'H и A'HB — подобны, прямоугольные и имеют  по паре вертикальных соотв. равных углов
AC'H и CA'H — аналогично

отсюда: tg(a+b) = (tg(a) + tg(b) )/ (1 — tg(a)*tg(b) )
тангенсы а и b могут записаны как:
tg(a) = A'C/AA' = A'H/A'B;
tg(b) = A'B/AA' = A'H/A'C
откуда A'B*A'C= AA'*A'H   (*)

записывая тангенс интересующего нас угла как тангнес суммы получим :

tg(a+b) = ( A'B/AA' + A'C/AA' ) / ( 1 — A'H/A'B  * A'H/A'C) = BC/AA' * A'B*A'C / (A'B*A'C — A'H^2 ) = (используя * ) =
BC/AA' * AA'*A'H / (A'H* (AA' -A'H) ) = BC/AH, что и требовалось доказать.
20.10.16
Лучший ответ по мнению автора

Другие ответы

Пускай точка К на стороне АС — основание высоты ВК.     Рассмотрим треугольники ВКС и АКН. Они подобны.

Из подобия следует:  ВК/АК=ВС/АН.    Но ВК/АК=tgA, поэтому и ВС/АН=tgA.
20.10.16

Михаил Александров

Читать ответы

Андрей Андреевич

Читать ответы

Eleonora Gabrielyan

Читать ответы
Посмотреть всех экспертов из раздела Учеба и наука > Математика
Пользуйтесь нашим приложением Доступно на Google Play Загрузите в App Store