Решить пожалуйста! С номера 7.35 по номер 7.39 Задание: найти производные функций.

Ответы

7.35 y' = 3x^2*sin(cos(x)) + x^3*cos(cos(x)*(-sinx) = 3x^2*sin(cos(x)) — x^3*sin(x)*cos(cosx)
7.36 y =sin^4(x/2) + cos^4(x/2) + 2sin^2(x/2) * cos^2(x/2) -2sin^2(x/2)*cos(x/2) = (sin^2(x/2)+cos(x/2)^2)^2 — 1/2 *sin^2(x)= 1 — 1/2*sin^2(x)
y' = -2 sin(x)*cos(x)  = — sin(2x)
7.37 y' = 2/(sqrt(x-4)+sqrt(x) ) * (1/sqrt(x-4) + 1/sqrt(x) ) = 2/(sqrt(x-4)+sqrt(x) * (sqrt(x-4)+sqrt(x) ) / sqrt( (x-4)*x) =
2/sqrt( (x-4)*x)
7.38 y' = 1/3*x^(-2/3) *(e^(3x)-5) + x^(1/3)*3e^(3x)
7.39 y' = 1/4*(1+e^(4x))^(1/4) *4e^(4x)
09.11.16
Рекомендуем личную консультацию

Михаил Александров

Сейчас на сайте
Помогу подготовиться к работам и экзаменам (ЕГЭ, ГИА), сделать домашние задания, в том числе и вузовский курс (кроме теории вероятности и статистики), проконсультирую и настрою на систему обучения
Посмотреть всех экспертов из раздела Учеба и наука > Математика